Enforce pre-defined validation constraints

In a previous guide, you defined validation constraints ad-hoc when initializing Curator objects.

Often, you want to enforce a pre-defined set of validation constraints, like, e.g., the CELLxGENE curator (Curate AnnData based on the CELLxGENE schema).

This guide shows how to subclass Curator to enforce pre-defined constraints.

Define a custom curator

Consider the example of electronic health records (EHR). We want to ensure that

  1. every record has the fields disease, phenotype, developmental_stage, and age

  2. values for these fields map against specific versions of pre-defined ontologies

The following implementation achieves the goal by subclassing DataFrameCurator.

EHR Curator
import bionty as bt
import pandas as pd
from lamindb.core import DataFrameCurator, Record, logger
from lamindb.core.types import UPathStr, FieldAttr

__version__ = "0.1.0"

# Curate these columns against the specified fields
DEFAULT_CATEGORICALS = {
    "disease": bt.Disease.name,
    "phenotype": bt.Phenotype.name,
    "developmental_stage": bt.DevelopmentalStage.name,
}

# If columns or values are missing, we substitute with these defaults
DEFAULT_VALUES = {
    "disease": "normal",
    "development_stage": "unknown",
    "phenotype": "unknown",
}

# Map values onto the following ontology versions
DEFAULT_SOURCES = {
    "disease": bt.Source.get(
        entity="bionty.Disease", name="mondo", version="2023-04-04"
    ),
    "developmental_stage": bt.Source.get(
        entity="bionty.DevelopmentalStage", name="hsapdv", version="2020-03-10"
    ),
    "phenotype": bt.Source.get(
        entity="bionty.Phenotype", name="hp", version="2023-06-17", organism="human"
    ),
}


class EHRCurator(DataFrameCurator):
    """Custom curation flow for electronic health record data."""

    def __init__(
        self,
        data: pd.DataFrame | UPathStr,
        categoricals: dict[str, FieldAttr] = DEFAULT_CATEGORICALS,
        *,
        defaults: dict[str, str] = None,
        sources: dict[str, Record] = DEFAULT_SOURCES,
        organism="human",
    ):
        self.data = data

        if defaults:
            for col, default in defaults.items():
                if col not in self.data.columns:
                    self.data[col] = default
                else:
                    self.data[col].fillna(default, inplace=True)

        super().__init__(
            df=self.data, categoricals=categoricals, sources=sources, organism=organism
        )

    def validate(self, organism: str | None = None) -> bool:
        """Validates the internal EHR standard."""
        missing_columns = {"disease", "phenotype", "developmental_stage", "age"} - set(
            self.data.columns
        )
        if missing_columns:
            logger.error(
                f"Columns {', '.join(map(repr, missing_columns))} are missing but required."
            )
            return False

        return DataFrameCurator.validate(self, organism)

Use the custom curator

!lamin init --storage ./subclass-curator --schema bionty
→ connected lamindb: testuser1/subclass-curator
import lamindb as ln
import bionty as bt
import pandas as pd
from ehrcurator import EHRCurator

ln.track("2XEr2IA4n1w40000")
→ connected lamindb: testuser1/subclass-curator
→ notebook imports: bionty==0.51.2 ehrcurator lamindb==0.76.13 pandas==2.2.3
→ created Transform('2XEr2IA4'), started new Run('9448WbXT') at 2024-10-17 13:14:35 UTC
# create example DataFrame that has all mandatory columns but one ('patient_age') is wrongly named
data = {
    'disease': ['Alzheimer disease', 'Diabetes mellitus', 'Breast cancer', 'Hypertension', 'Asthma'],
    'phenotype': ['Cognitive decline', 'Hyperglycemia', 'Tumor growth', 'Increased blood pressure', 'Airway inflammation'],
    'developmental_stage': ['Adult', 'Adult', 'Adult', 'Adult', 'Child'],
    'patient_age': [70, 55, 60, 65, 12],
}
df = pd.DataFrame(data)
df
Hide code cell output
disease phenotype developmental_stage patient_age
0 Alzheimer disease Cognitive decline Adult 70
1 Diabetes mellitus Hyperglycemia Adult 55
2 Breast cancer Tumor growth Adult 60
3 Hypertension Increased blood pressure Adult 65
4 Asthma Airway inflammation Child 12
ehrcurator = EHRCurator(df)
ehrcurator.validate()
Hide code cell output
✓ added 3 records with Feature.name for columns: 'disease', 'phenotype', 'developmental_stage'
1 non-validated values are not saved in Feature.name: ['patient_age']!
      → to lookup values, use lookup().columns
      → to save, run add_new_from_columns
✗ Columns 'age' are missing but required.
False
# Fix the name of wrongly spelled column
df.columns = df.columns.str.replace("patient_age", "age")
ehrcurator.validate()
Hide code cell output
• mapping disease on Disease.name
!    found 4 validated terms: ['Alzheimer disease', 'diabetes mellitus', 'breast cancer', 'asthma']
      → save terms via .add_validated_from('disease')
!    1 terms is not validated: 'Hypertension'
      → fix typos, remove non-existent values, or save terms via .add_new_from('disease')
• mapping phenotype on Phenotype.name
!    found 3 validated terms: ['Mental deterioration', 'Hyperglycemia', 'Increased blood pressure']
      → save terms via .add_validated_from('phenotype')
!    2 terms are not validated: 'Tumor growth', 'Airway inflammation'
      → fix typos, remove non-existent values, or save terms via .add_new_from('phenotype')
• mapping developmental_stage on DevelopmentalStage.name
!    2 terms are not validated: 'Adult', 'Child'
      → fix typos, remove non-existent values, or save terms via .add_new_from('developmental_stage')
False
# Use lookup objects to curate the values
disease_lo = bt.Disease.public().lookup()
phenotype_lo = bt.Phenotype.public().lookup()
developmental_stage_lo = bt.DevelopmentalStage.public().lookup()

df["disease"] = df["disease"].replace({"Hypertension": disease_lo.hypertensive_disorder.name})
df["phenotype"] = df["phenotype"].replace({
    "Tumor growth": phenotype_lo.neoplasm.name,
    "Airway inflammation": phenotype_lo.bronchitis.name}
)
df["developmental_stage"] = df["developmental_stage"].replace({
    "Adult": developmental_stage_lo.adolescent_stage.name,
    "Child": developmental_stage_lo.child_stage.name
})

ehrcurator.validate()
Hide code cell output
• mapping disease on Disease.name
!    found 5 validated terms: ['Alzheimer disease', 'diabetes mellitus', 'breast cancer', 'hypertensive disorder', 'asthma']
      → save terms via .add_validated_from('disease')
• mapping phenotype on Phenotype.name
!    found 5 validated terms: ['Mental deterioration', 'Hyperglycemia', 'Neoplasm', 'Increased blood pressure', 'Bronchitis']
      → save terms via .add_validated_from('phenotype')
• mapping developmental_stage on DevelopmentalStage.name
!    found 2 validated terms: ['adolescent stage', 'child stage']
      → save terms via .add_validated_from('developmental_stage')
False
ehrcurator.add_validated_from("disease")
ehrcurator.add_validated_from("phenotype")
ehrcurator.add_validated_from("developmental_stage")

ehrcurator.validate()
Hide code cell output
✓ disease is validated against Disease.name
✓ phenotype is validated against Phenotype.name
✓ developmental_stage is validated against DevelopmentalStage.name
True
Hide code cell content
!rm -rf subclass-curator
!lamin delete --force subclass-curator
• deleting instance testuser1/subclass-curator